
1

Software Testing Plan
Version: 1.0

2 April 2019

Team
Jasper

Project

Jabulani School Simulation Portal

Sponsor
Dr. Gretchen McAllister

Mentor

Ana Paula Chaves Steinmacher

Members
Karsten Nguyen Carli Martinez

 Ruben Rincon Jasmine Mitchell

2

Table of Contents

Cover Page ……………………………………………………………………... 1
Introduction …………………………………………….…….………............... 3
Unit Testing …………………………………………….…….………...............
4
Integration Testing …………………………………….…….………............... 7
Usability Testing ……………………………………….…….………..............
10
Conclusion …………………………………………….…….……….............. 11

3

Introduction

With today’s ever increasing diverse population, there is now a new inquiry into how
instructors can embrace the diversity of their student body — whether it is between a
traditional face-to-face class, or one that is taught online. Current research suggests that
diversity in a traditional classroom is a powerful asset, providing that the instructor is
sensitive to individual student’s backgrounds. However, it can prove difficult to deal with
the diversity gap between students and teachers. To allow these teachers to engage
with their students respectfully, teachers must know their students and their academic
abilities individually in order to be able to respond in a culturally, socially, and
linguistically appropriate manner. The best approach for teachers to obtain knowledge
for handling specific diversity-related circumstances is by connecting to the experience
on a personal and professional level of students with various backgrounds.

Our sponsor, Gretchen McAllister, is a Professor of Education at NAU. While teaching
abroad in South America, she contemplated the idea of developing a school simulation
portal that could amplify and fully encompass diversity sensitivity in an academic setting.
This portal, appropriately named “Jabulani” — the siSwati (Kingdom of Swaziland) word
for happiness, is to made to lay the foundation for the future of diversity training in

academia. ​ ​The Jabulani School Simulation Portal is a web application meant to simulate
real-world classroom experiences. Its main feature is the creation and assigning of virtual
classrooms populated with virtual student profiles. Learning activities based on those
students are then assigned to classrooms for teachers-in-practice(TIPs) to complete. The
application is mostly data driven so it must be capable of holding data for classrooms and
TIP offerings, creating new classrooms, creating student profiles, creating activities and
groups of activities, and editing information for most of these elements as needed.
Although activities are based on and assigned to classrooms, they are externally created
and thus only need uploading capabilities to the site

Our testing plans involve creating and running various tests for our web portal once it is
successfully ported onto NAU’s IT servers. These tests include unit tests, integration
tests, and usability tests for our application. For unit testing, we’ll mostly be testing the
site’s various features to make sure they are properly accepting or adding data. For
integrations tests, since we are using Ruby on Rails we must make sure the various gems
it uses are compatible with each other, as well as correctly integrating with our database
and hosting services. While unit and integration tests will be done using the site, usability

4

tests only require our client and her coworkers to test the software personally which can
be done before hosting everything onto NAU. We will check that users are not
completely confused when attempting to find, access, and use any of the site’s features.
There will not be a need for them to access the database or hosting data on an average
basis. The following sections describe all three of these test types in detail.

Unit Testing

For any software application, both Unit testing, as well as Integration testing, are very
important as each of them employs a unique process to test our software application.
Unit testing allows us to test individual units/components of our software that are small
enough to be testable. These will help us at any point in time to ensure our software is
working properly at a unit level. For instance, after any minor or major update to our
database, we can run our unit tests to ensure nothing is broken by the update before
committing and pushing our changes to our GitHub repository, this is sometimes called a
“warning system”. Similarly, we can use unit testing to help debug our code and assess
at which level in our architecture our bug resides, and gain more information about it.

Since testing is built into our Rails framework now with the Rspec gem, we will utilize it to
write and build unit tests for several components of our software and run them using the
command line. One command can test several tests at once, which makes testing quick
and easy. The Rspec gem describes itself as designed where “tests are not just scripts
that verify your application code. They’re also specifications (or ​specs,​ for short): detailed
explanations of how the application is supposed to behave, expressed in plain English.”
We believe this will make our tests easy to understand quickly, especially for future
developers on this project.

Our Plan
While our integration testing and usability testing will ensure the overall function of our
main components like “building a TIP class”, our unit testing will break down these
central components into small pieces where we can ensure the function of each
individual part of it, such as testing the creation and saving of each piece of data within a
TIP class related to each table involved.

The functions of our software centrally reside in the controllers, with our models being
used strictly to describe the relationships between the tables and do not yet have any
validation code we can test. We currently have almost a one-to-one relationship between
our controllers and our tables, where each table’s controller contains the create, update,

5

read and delete functions for the data - these are the functions we will test in our unit
testing. We will also write our unit tests with ‘unusual’ inputs to attempt to make them fail
as well. Below are our main central components broken down into smaller unit tests of
our function.

Functions Test Table

CREATE Create a student profile
“Issac” with sample strings
for the remaining attributes

Student Profiles​ - These
tests will execute
commands to interact with
the student profile table of
this database and test to
ensure these functions are
working properly for a test
student profile.

UPDATE Update one of the
attributes and ensure it is
saved and updated

READ Display the values of each
of the attributes

DELETE Delete the profile and
ensure it is removed from
the database

Functions Test Table

CREATE Create a virtual classroom
“1st Grade” with sample
strings for the remaining
attributes and student
profiles

Virtual Classrooms ​ - These
tests will execute
commands to interact with
the virtual classrooms table
of this database and test to
ensure these functions are
working properly for a test
virtual classroom with
profiles inside of it.

UPDATE Update one of the
attributes and ensure it is
saved and updated

READ Display the values of each
of the attributes

DELETE Delete the virtual
classroom and ensure it is
removed from the
database

6

Functions Test Table

CREATE Create a learning activity
“Test Activity” with sample
strings for the remaining
attributes and a few
activities inside of it

Learning Activity​ - These
tests will execute
commands to interact with
the learning activities table
of this database and test to
ensure these functions are
working properly for a test
learning activity with
activities inside of it.

UPDATE Update one of the
attributes and ensure it is
saved and updated

READ Display the values of each
of the attributes

DELETE Delete the learning activity
and ensure it is removed
from the database

Functions Test Table

CREATE Create a TIP Class “Test
TIP Class” with sample
strings for the remaining
attributes and classrooms,
enrollments, learning
activities and profile
hide/show data inside of it.
Ensure it is all saved and
the respective relational
join tables are properly set
up.

TIP Class​ - These tests will
execute commands to
interact with the TIP Class
table of this database and
test to ensure these
functions are working
properly for a TIP Class
with the following inside of
it:

● Virtual Classrooms
● Users through

Enrollments
● Learning Activities
● Profile Hide/Show

for TIPs

UPDATE Update one of the
attributes and ensure it is
saved and updated

Update a classroom,
enrollment, learning activity
and profile hide/show to
now be apart of the TIP

7

class and ensure the
relation is established

Update a classroom,
enrollment, learning activity
and profile hide/show to no
longer be apart of the TIP
class and ensure the
relation is destroyed

READ Display the values of each
of the attributes

Display the classrooms,
enrollments, learning
activities and profile
hide/show data related to
the TIP class

DELETE Delete the TIP class and
ensure it is removed from
the database, as well as all
of the join tables it was
related it

Integration Testing

After we make sure that each unit is unit tested before we can start the integration
testing. Integration testing is a level of software testing where individual units are
combined and tested as a group. The purpose of this level of testing is to expose faults in
the interaction between integrated units. Test drivers and test stubs are used to assist in
Integration Testing. The main goal of the testing performed is to expose defects in the
interfaces and in the interactions between integrated components or systems ​Integration
testing is done to test the modules/components when integrated to verify that they work as
expected to test the modules which are working fine individually does not have issues when
integrated​. A Module, in general, is designed by an individual software developer whose
understanding and programming logic may differ from other programmers. Integration
Testing becomes necessary to verify the software modules work in unity. Interfaces of
the software modules with the database needs to be correlating. Integration test cases
differs from other test cases in the sense it focuses mainly on the interfaces & flow of
data/information between the modules.

8

We will be taking the incremental approach, where the testing is done by joining two or
more modules that are logically related. Then the other related modules are added and
tested for the proper functioning. The process continues until all of the modules are
joined and tested successfully. First we will be testing our end - to - end workflow/
business scenarios which takes the user through a series of webpages to complete.
Then we will be Testing all links in your webpages are working correctly and make sure
there are no broken links. Links to be checked will include outgoing, internal, and anchor
links.

Test Case
ID

Test Case
Objective

Test Case Description Expected Results

1 Sign up page A page where the user is
about to create an account

User will be able to
login with the new
account

2 Login page Faculty and students will be
able to login

After logging in,
they will be directed
to their dashboard

3 Dashboard links Testing the dashboard links,
making sure they are
working and directed to the
correct page for faculty and
students

Making sure all the
links go to the
correlating correct
page and the
previous page

4 View/Edit Profiles We will be seeing if the view
edit profiles and the search
bar works

User should be able
to view all the
student profiles,
edit them, and
search through
each field

5 Add Student
Profiles

User should be able to add a
student profile

User will be able to
add a student
profile and then be
redirected the
view/edit student
profiles, where they
can search for their
new student

9

6 View All
Classrooms

User will be able to view all
the classrooms

The View All
Classrooms page
will direct them to
view all the
classrooms and be
able to click on the
classrooms link

7 Build a classroom User will be able to build a
classroom

User will be able to
a build a classroom
and add a name
and description.
After it is made then
it will be redirect to
the view all
classroom page.

8 Add an
activity/learning
activity

Users will be able to add an
activity or learning activity via
pdf or text

When the user
creates an activity
or learning activity,
they should be
redirected to the
learning activites
menu

9 Manage learning
activities

User will be able to view all
the learning activities and
edit if needed.

User will be able to
view all the learning
activities and edit if
chosen. After the
user has edited the
learning activities
then it should be
redirected to the
manage learning
activities page.

10 Update TIP
Progress

User will be able to pick a
student and the correlating
activities and click if its
complete, by default it is not
complete is chosen.

After the user has
altered a TIP
progress, then the
page should be
refreshed with a
message stating it
was updated

11 TIPS accessing TIPS will be able access the TIPS will be access

10

activities pages that their respected
faculty member has assigned
them

the activities and it
will popup in a new
tab

Usability Testing

Usability Testing will allow the team to view and analyze how the end-user will interact
with the web application. The purpose of this test is that it will establish a baseline of user
performance and highlight any design concerns that must be addressed. It utilizes a
combination of methods to determine the understandability of the user interface and
experience.

Our Plan
Moderated testing is usability assessment completed by the end-user in the presence of
a moderator, which is most appropriate for our system. A moderator will guide the user
through the flow and take notes on observations that will be used to measure the overall
usability. The subject will be encouraged to think aloud to provide the moderator with the
most accurate insight. They will then attempt to complete a series of tasks that are
specified in the system’s user flow. The moderator will need to take note of the following:

● How long did it take for the user to complete a task?
● Is the application showing problems with functionality?
● How satisfied is the user with the web application?
● Is the user able to navigate the website without frustration?
● How many clicks does it take to reach a task?

Although online tests provide tools for analyzing the results of this information, our
targeted audience is a specific demographic. Our product must be suitable for NAU
students and faculty at the College of Education. Using and analyzing our custom test on
the intended audience ensures that our results are as accurate and realistic as possible.
Participating in the tests will be our sponsor, Gretchen McAllister, as well as her
colleagues and student teachers in practice. They will range in low to moderate for their
technical abilities in order to demonstrate how the average user will use the system. The
tests will span across three different demonstration sessions held in the first few weeks
of April in the CUPI room located in the Eastburn Education Center.

In addition to these tests, we will need to frequently test our application on our own. As
specified in the Requirements Document, our system must be easy to understand from

11

the programmer perspective as well as being flexible for future improvements. In order to
keep track of this information, we have created a document that will keep track of our
personal observations when interacting with the web application. We will document
information such as inadequate buttons for transitioning, flaw in user flow, or problems
with functionality specified in the Requirements Document.

Conclusion

As shown above, our various testing methods should ensure a smooth quality for our
web application. In summary we have our unit testing, our integration testing, and our
usability testing. For unit testing we are mostly testing CRUD features on the site and
making sure they are properly functional when accessed by a user. Such features include
simple actions such as being able to log in, being able to edit your profile, creating
classrooms or activities, assigning TIPs to offerings, and other features. Our integration
testing consists of making sure that various functional modules are also capable of
working(integrating) together. For example if we use the function to create a classroom
and then we use a function that lists and edits all classrooms, they should be able to
show the created classroom. In a similar fashion, we are checking if all functions are
successfully integrating any created outputs or data with each other and not simply
displaying things. Finally, usability testing involves our client and other users actually
testing the front-end website portion of the product i.e. actually using the product. The
usability tests will measure user metrics such as click times, difficulty or confusion on
access certain site sections, or them discovering any bugs. Along with users testing the
site, we will also constantly be testing our own site as we continue to add or fix any
features.

Our goal is that these various methods of testing will bring to light any errors or flaws in
design that can be fixed iteratively. Hopefully the tests will catch everything but since
that is probably impossible our tests will preferably find as many bugs as possible.
Having our client and various users test the product should provide a fresh perspective in
bug catching that is harder to see as a developer that already knows how to pilot the
application without errors. After these test our end result should be a more refined and
usable web application for our client.

